Valving and Sensing Technologies for 1.5 **Microfluidics: Electrostatic Microvalves**

Professor: Paul J. A. Kenis Graduate Student: Joshua D. Tice Postdoc: Amit V. Desai Undergraduate Student: Thomas A. Bassett

Goals

Develop and characterize a microvalve that is actuated with electrostatic forces and easily integrated into microchemical systems.

Research Results

Mapping to Center's Objectives

- Enable fluid routing and pumping on nanomanufacturing toolbit.
- Simplify ancillaries and interfacing needed to operate toolbit.

Research Plan

- Model microvalve to identify critical design parameters and predict effective design space to minimize actuation potentials.
- Develop a fabrication process utilizing soft-lithographic techniques.
- Optimize microvalve for operation in nanomanufacturing toolbit.

Fundamental Questions / Challenges

How to integrate electrodes into microvalve architecture using only simple fabrication techniques at ambient

thickness, <i>t_m</i>	2.5	5	το-30 μπ
Electrode gap, g	0.5	1.5	1-15 µm
Dielectric constant of fluid, ε_{fluid}	0.5	1	

Parameters identified by model with greatest effect on actuation potentials.

Microvalve actuation and characterization:

Left: micrographs of microvalves in the open and closed state. Above: actuation potentials for microvalves compared with model predictions.

Broader Impact

- Point-of-care diagnostics
- Portable lab-on-a-chip
- Automated high-throughput screening

pressure / temperature?

Micro-Nanofluidics

Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems

an NSF-sponsored center for nanoscale science and engineering

Wireless chemical monitoring

Interaction with Other Projects

• Microfluidic interface for E-Jet printing. • Fluidic components integrated with optical sources for sensing.

Future Efforts

- Test valve with relevant printable fluids.
- Construct microvalve array to pump and route fluids on print head.