Electrochemical Stamping for Metal Nanomanufacturing

Professors: Nicholas X. Fang, Placid Ferreira
Graduate Students: Keng Hsu, Anil Kumar, Kyle Jacobs

Goals
- Understand the fundamental science involved in the process.
- Develop relevant complementary processes to implement the process at an industrial scale.
- Develop novel bio and chemical sensing elements to for nanoscale sensing.

Mapping to Center’s Objectives

<table>
<thead>
<tr>
<th>Manufacturing Systems</th>
<th>Nanoscale Sensing</th>
<th>Micro-Nano Fluidic Toolkit</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid-State Supersonic Stamping</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fundamental Questions/Challenges

Dynamic kinetics/transport behaviors.

- Experimental verification of developed model.
- Effect of stamp material property changes on S4 patterning.
- Characterization of different sensor designs and their optimization.

Theoretical limit in resolution.

- Coupled experimental and theoretical study on simple sensing elements through SERS and MEF.

Interaction with Other Projects

- **Micro-Nanofluidic Toolkit**
 - J. Georgiadis, M. Shannon, N. Aluru: Computational Tools and Models for Electrokinetic Nanoflows
 - P. Ferreira, N. Fang: Solid-State-Supersonic Stamping (S4)

- **Manufacturing Systems**
 - M. Yu, P. Ferreira: Integrated & Versatile Testing platform
 - S4-MacEtch for Thermoelectrics (Collaboration with Li and Sinha group)

Broader Impact
- Design tool for plasmonic sensing for applications in optics, bioengineering, and electronics.
- Represents a viable alternative to mass production of existing metal based structures ranging from macro to nanoscale.

Research Results

- **Theoretical model**
- **Experimental results**
- **Matching of prediction**

Sensor characterization

- Raman scattering and fluorescence enhancement

Sensor characterization

- Effect on S4 patterning

Future Efforts

- Experimental verification of numerical model on S4 process.
- Full-scale parametric study of mechanical properties of S4 stamps on S4 process performance.
- Construction of database for plasmonic sensing element geometry and characterization for optimization.