3D Printing in the Classroom
Today

• Learn about creating nano-sized 3-D objects
• Learn about polymerization and how it can be initiated by light
• Learn how to use this technology to create 3-D objects
Micromanufacturing

- Current micromanufacturing methods make relatively flat objects.
 - Alignment of layers hard to achieve
 - Process very complex and expensive
- Flat objects called 2-D or 2.5-D

The Challenge: Lack truly 3-D microfabrication methods

The Solution: Microstereo Lithography
Micromanufacturing

- Micromanufacturing refers to methods used to create structures of micrometer sizes or smaller.

One micrometer, or micron, is one-millionth of a meter \((1.0 \times 10^{-6} \text{ m}) \)

One nanometer is one-billionth of a meter \((1.0 \times 10^{-9} \text{ m}) \)

[Images of Micro Gears, Photonic Crystal, and Bioreactor]
3-Dimensional Printing

- Work of Professor Nicholas Fang in nanoscale optical imaging
- Idea is to mimic a complicated and expensive lab setup in an inexpensive way.
- Uses equipment normally found in a school classroom.
• So, can’t take $500,000 machine into classroom – what can students do?
3-Dimensional Printing

- Computer with PowerPoint image
- Magnifying glass
- Data projector
- Product (3-d object)
- Mirror
- Elevator
Light-Activated Polymer

- uv light reacts with initiator to create two radicals.
- Radicals each have single free electron.
Light Activated Polymer

- Radical bonds with monomer.
- Now single free electron at end of chain
Light Activated Polymer

- Repeats until two ends with free electrons interact and bond.

Initiation:

- Photo initiates the process, forming a radical.

Propagation:

- Monomer + radical → polymer + heat
- Monomer + polymer → polymer + heat

Termination:

- Polymer + radical → polymer + heat
3D Printing Process
• Drawer slide provides smooth movement.
• T-nut and threaded screw controls motion.
Slicing the 3D Object

- 3D objects are constructed by slices.
- Overlapping between layers is generally required.
Overhanging Structures?

- Amount of Sudan I determines thickness of layer.
What to Do

• Make black/white images.
• Set up system.
• Print!
Slicing the 3D Object

• Create each different slice.

• Add blank slide to advance elevator.
Sample

- To make a rectangular box…
• To make a rectangular box…

Repeat this slide to make a taller rectangular cube
Alignment is Important

- Be sure each slide aligns.
- To align - copy slide, make modifications.
- Check properties.
• Polymer reacts with uv light.
• Polymer does NOT react with red light, but we can see red.

• Red is good color to use for preparing an apparatus.
Focus Slide

- Use a red complex image to focus.
• Make a red version of the largest image to align.
Instructions

• Use red text for instructions.

Repeat 25 times
Final

- Put these elements together in one file.
Examples of Objects
Welcome to 3-D Printing with Mathematica!

If the Program Does Not Load Automatically:
A. Click the long bracket farthest to the right of the screen. Press "Shift", "Enter" (may take a minute)
B. To hide the code, double click the bracket closest to the 3 graphs to the right of the screen

To Create 3-D Objects:
1. Enter in your Upper and Lower Bound Equations and press "Enter"
2. Drag the "Slicer" to view horizontal cross sections of your 3-D object
3. Click "Generate SlideShow!" to obtain the 3-D printing slideshow for your object

Initialization code

Panel interface

Rotating A Bounded Region Around The Y-Axis

Lower bound Eqn (Red) Upper bound Eqn (Blue) Slicer (Purple)

\((-6+x)^2\) \((-3+x)^2\) \(6+(-4.5+x)^2\)

Out[45]=

Generate SlideShow! (This may take up to a minute)
Student Objects
Student Objects
A Different Application!

Printing a 3D Object Using Inequalities

inequalities:

\[
\begin{align*}
(x^2 + y^2 &< 0.5 \| x^2 + (1+y)^2 + z^2 < 1.1 \| \\
4 &\geq x^2 + y^2 + z^2 \geq 3) \& \& \\
-1.1 &< y < 1.1
\end{align*}
\]

\[\begin{array}{c}
 x_{\text{min}} & -2 \\
 y_{\text{min}} & -2 \\
 z_{\text{min}} & -2 \\
 x_{\text{max}} & 2 \\
 y_{\text{max}} & 2 \\
 z_{\text{max}} & 2
\end{array}\]
One Layer at a Time
Mathematical Sculpture

Printing a 3D Object Using Inequalities

inequalities:
\[x^2 + y^2 + z^2 < 2 \]
\[(-0.4 \leq z \leq 0.4 \& \&
 \quad -0.4 \leq x \leq 0.4) \]
\[(-0.4 \leq z \leq 0.4 \& \&
 \quad -0.4 \leq y \leq 0.4) \]
\[(-0.4 \leq y \leq 0.4 \& \& -0.4 \leq x \leq 0.4) \]
Mathematical Sculptures
Printing a 3D Object Using Inequalities

\[
\begin{align*}
(2.5x^2 + 2.5y^2 + (-1.75 + z)^2 > 1 \land \land \\
(2x^2 + 2y^2 + (-1.5 + z)^2 < 1.75) \lor \\
(5x^2 + 5y^2 < 0.25 \land \\
(z < 0.1 \land z > -1.6) \lor \\
(x^2 + y^2 + 3(1.5 + z)^2 < 0.5 \land \\
(z > -1.5)) \lor \\
x^2 + y^2 + 5(0.25 + z)^2 < 0.15)
\end{align*}
\]
Engagement Ring!

Printing a 3D Object Using Inequalities

Inequalities:

\[
\begin{align*}
\left(x^2 - (-0.3+y)^2 + z^2 < 0 \&\& \\
y > 0 \&\& z < 1.4 \&\& z > -1.4 \&\& \\
x < 1.4 \&\& x > -1.4 \right) \\
\left(x^2 + (0.45+y)^2 + z^2 < 1.6 \&\& \\
x^2 + (0.45+y)^2 + z^2 > 0.8 \&\& \\
-0.5 < x < 0.5 \right) \\
\left(x^2 + (0.45+y)^2 < 0.05 \&\& \\
-1.4 < z < -1 \right)
\end{align*}
\]

\[
\begin{align*}
x_{\text{min}} & = -2 & x_{\text{max}} & = 2 \\
y_{\text{min}} & = -2 & y_{\text{max}} & = 2 \\
z_{\text{min}} & = -2 & z_{\text{max}} & = 2
\end{align*}
\]